
Antibody Complementarity-Determining Region
Sequence Design using AlphaFold2 and Binding

Affinity Prediction Model

Takafumi Ueki
School of Computing

Tokyo Institute of Technology
Kanagawa, Japan

ueki@li.c.titech.ac.jp

Masahito Ohue*
School of Computing

Tokyo Institute of Technology
Kanagawa, Japan

ohue@c.titech.ac.jp

*Corresponding author

Abstract—Affinity maturation in the immune response is lim-
ited in terms of affinity gain, and natural antibodies often do not
have the binding affinity required for therapeutic applications.
Therefore, improving the binding affinity of antibodies is essential
for developing antibody-based therapeutics. Designing antibodies
using experimental methods is expensive in terms of cost and
time owing to the large range of complementarity-determining
regions to be explored. Recently, computational methods have
been developed as low-cost and fast means of designing and
redesigning antibodies. This study evaluated the design perfor-
mance of AlphaFold2 and the binder hallucination, which can
predict protein 3D structures with high accuracy even without
experimental antibodies, by redesigning antibody sequences to
improve the binding affinity of existing antigen-antibody com-
plexes. Therefore, antibody sequences with higher affinity can
be designed for antigen-antibody complexes not included in the
training data of AlphaFold2, indicating that the proposed method
may be effective as an antibody design method.

Index Terms—antibody design, AlphaFold2, binding free en-
ergy, binder hallucinations
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I. INTRODUCTION

Affinity maturation of human and non-human natural an-

tibodies in the immune response is limited by the limited

increase in their binding capacity [1]–[4]. Therefore, in many

cases, they do not have the binding ability necessary for

therapeutic purposes. Improving the binding affinity is an

important step in developing antibody drugs.

The structure of an antibody comprises two regions: a

variable region and a constant region. In the variable region,

the loop structure called the complementarity-determining

region (CDR) is important for recognizing antigens. Although

non-CDRs are composed of relatively similar amino acid

sequences, the CDR has diverse sequences and structures.

Therefore, it is possible to generate antibodies with high

specificity for antigens because they can assume various

shapes.

Generating antibodies with high specificity for antigens

involves arranging amino acid sequences in the variable

region. The CDR comprises six regions, L1 to L3 and H1

to H3, and each amino acid sequence length is approximately

4–30 residues. When selecting sequences with high affinity

and specificity using experimental methods, the number of

sequence combinations to be examined is enormous, resulting

in exorbitantly high costs in terms of money and time.

In recent years, with advances in computational technology,

various computational methods have been developed in protein

engineering, attracting much attention because they reduce

experimental costs. In antibody design, language model-based

methods in deep learning can efficiently generate antibody

sequences that bind well to antigens compared to experimental

methods in terms of experimental costs. However, language

model-based methods are based on sequence-based methods.

Therefore, they are unsuitable for designing mutations in

sequences with high variabilities, such as CDR or sequences

without experimental data [5]–[7].

In protein engineering, remarkable progress has been

achieved in the field of conformation prediction, particularly

with the development of AlphaFold2 [8], which can pre-

dict protein conformations with high accuracy. Recently, a

technique called “hallucination” that applies the ability to

accurately predict protein structures to protein design has

gained attention [9]. hallucination has made it possible to

impose conditions from the viewpoint of 3D structure and

design. This method is used to generate protein structures that

bind to a given ligand when the 3D structure of the ligand is

specified.

In this study, we used the AfDesign protein design

method [10], which uses AlphaFold2 for structural prediction

in hallucination, to redesign the amino acid sequences in

the CDR as the design site for existing antibody-antigen

complexes. We aimed to take advantage of AlphaFold2’s

ability to predict protein structures with high accuracy, even

when experimental structures were unavailable.

II. METHODS

A. Binder hallucination

In this study, we focused on the binder hallucination

function of AfDesign and applied it to the antibody sequence

design problem. A schematic of the methodology used in this

2133

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00350



Target protein
(antigen)

Binder protein
(antibody)

�������������

AlphaFold2 Output

������	������ Loss function

mutate

pLDDT

pAE

C
�

distogram

pLDDT

pAE

dgram-cce

Fig. 1: Schematic of binder hallucination.

study is shown in Fig. 1. Binder hallucination designs protein

sequences using the following mechanism [11]:

1) Specify the type of target protein and the sequence

length of the binder protein.

2) The amino acid sequence of the binder side is randomly

generated at the specified length.

3) AlphaFold2 predicts the 3D structure of the target

protein-binder protein complex and outputs pLDDT and

pAE, which represent the reliability of the prediction and

the Cβ-distogram, a distance matrix between Cβ atoms,

respectively.

4) The amino acid sequence is updated to minimize the

loss using dgram-cce, pLDDT, and pAE as loss func-

tions (dgram-cce is a categorical cross-entropy of the

distogram).

Binder hallucination is a protein design approach that

simultaneously “generates a three-dimensional structure” and

“searches for a sequence” by iteratively repeating the processes

described in steps 3 and 4, aiming to design a protein that is

expected to bind to a target protein.

In this study, a stepwise optimization method

(design_3stage()) was provided by AfDesign to

directly optimize the one hot encoded array when dealing

with complex topologies, such as three-dimensional structures.

This method involves optimizing the output of the neural

network before passing it through the softmax activation

function (logits), followed by optimizing the output of the

softmax activation function (soft), and finally optimizing

the array encoded in the one-hot representation (hard). This

approach allows optimization to be performed for complex

topologies [12] and was employed in this study.

In the binder hallucination function of AfDesign, existing

proteins can be partially redesigned by preparing the amino

acid sequence of the binder protein and specifying the site to

be redesigned in Step 1. Therefore, in this study, we applied

binder hallucination by replacing the target with an antigen and

the binder with an antibody and targeted the CDR amino acid

sequences of the antibody as sites for the redesign. We used

AfDesign to design sequences with higher binding affinities

than those of the original sequences.

B. Output value of AlphaFold2

1) pLDDT: The pLDDT metric is an adaptation of the

lDDT index introduced by Mariani et al. [13]. The lDDT

metric is commonly used to assess the accuracy of predicted

protein structures in terms of their ability to replicate cor-

responding reference structures. Specifically, it involves the

calculation of all interatomic distances between a set of atoms

belonging to a target residue in the reference structure and

a set of atoms within a predetermined distance threshold

(R0) that do not belong to the same residue. The percentage

of atoms within the threshold that are also present in the

predicted structure is computed to quantify the extent to which

the predicted structure preserves the local geometry of the

reference structure. The pLDDT index builds on this metric by

incorporating additional factors that account for uncertainties

and errors inherent in the prediction process, resulting in a

more robust and reliable measure of structural accuracy.

AlphaFold2 calculates lDDT-Cα, which targets only the

Cα carbons in each residue, and trains it to output pLDDT,

which is the predicted value of lDDT, even in cases where

the correct structure is unavailable. It outputs the reliability

of the prediction for each residue within a range of 0 to

100. The regions with low pLDDT values often correspond

to intrinsically disordered regions that do not have specific

structures [14]. In AfDesign, pLDDT is expressed as a value

between 0 and 1.

2) pAE: pAE is a matrix representing the positional error

between the Cα atoms of residue j and residue i, which is

calculated by aligning the predicted structure by AlphaFold2
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using the backbone structure of residue i with the experi-

mentally determined structure. When predicting structures for

which no ground-truth structure is available, regions where the

relative error between residues i and j is large indicate lower

confidence in the prediction [15].

3) Cβ distogram: In AfDesign, the distance matrix (dis-

togram) representing the distance between Cβ and Cβ residues

predicted by AlphaFold2 can be used. Using dgram-cce as a

loss function allows the design of predictions that have higher

confidence in forming complexes [16].

C. Valuation index

In this study, the change in binding free energy during the

antigen-antibody binding process, ΔΔG, was used to indicate

the strength of the antigen-antibody interaction. However, be-

cause it is difficult to obtain the value of ΔΔG experimentally,

we used the value predicted by the calculation in this study.

In this study, we used the DDG Predictor [17], [18], a deep

learning-based ΔΔG prediction tool.

III. EXPERIMENTS

A. Preliminary Experiment: Check the performance of DDG
Predictor

In this study, we employed the deep learning-based DDG

Predictor to evaluate the binding affinity of the generated

antibody-antigen complex. The structure after the mutation is

the one predicted by AlphaFold2. Therefore, in this experi-

ment, we checked whether there is a correlation between the

ΔΔG output by DDG Predictor and the experimental values

even for the 3D structure predicted by AlphaFold2.

1) Database: In this preliminary Experiment, we used the

AB-Bind Database [19], a database that collects structural

information on proteins and experimental data on changes in

binding affinity due to mutations. From the AB-Bind Database,

we extracted information on a total of 308 mutations in 11

complexes that are antibody-antigen complexes.

First, we input the amino acid sequences that reproduce the

mutations in the above database into AlphaFold2 to predict

their 3D structures. Then, we use DDG Predictor to predict

the ΔΔG between the generated structures and the original

structures. Finally, we examine the correlation between the

predicted values and experimental data.

B. Experiment 1: Determination of Loss Weights

In the binder hallucination function of AfDesign, the dgram-

cce, pLDDT, and pAE described in Section II-B can be used

as loss functions, and AfDesign allows the user to set the

weight of each loss. In this experiment, we varied the relative

weights of dgram-cce, pLDDT, and pAE losses to redesign the

antibody sequences under different conditions and investigated

the appropriate weights of these losses.

1) Protein Design Tools: AfDesign, a protein design tool

available at the GitHub repository [10], was used in this study.

Software version 1.0.8 was used in this study.

2) Various parameters: The following parameters were

used in the experiment: the number of iterations represents

the number of iterations of logits, soft, and hard in the

design_3stage(). In AfDesign, the number of times that

AlphaFold2 iteratively improves the structure through cycling

is specified as num recycle.

• Design object: 1VFB

• Number of repetitions: logits-soft-hard=50-50-5

• num recycles = 0

• Learning rate: 0.01

• Optimization Algorithm: Adam [20]

Ten samples were generated for each of the six regions of

the CDR, L1–3, and H1–3 under six conditions (A—F). For

each of the 360 samples generated, the values of ΔΔG were

outputted using the DDG Predictor. CDRs were determined

according to Chothia’s definition [21]. The coordinates of

atoms other than the target atom were fixed, and structure

prediction using AlphaFold2 was performed only for the target

amino acid.

Case A dgram-cce=1.0

Case B dgram-cce=1.0, pLDDT=0.2, pAE=0.2

Case C dgram-cce=1.0, pLDDT=0.4, pAE=0.4

Case D dgram-cce=1.0, pLDDT=0.6, pAE=0.6

Case E dgram-cce=1.0, pLDDT=0.8, pAE=0.8

Case F dgram-cce=1.0, pLDDT=1.0, pAE=1.0

3) Valuation index: Using ΔΔG predicted by the DDG

Predictor, the average ΔΔG and IMP (IMProved Percentage),

the percentage of sequences generated with a higher binding

capacity than the original amino acid sequence was used as

the valuation index.

C. Experiment 2: Application of AfDesign to existing antigen-
antibody complexes

Based on the results of Experiment 1, we determined

the appropriate weights for the losses pLDDT, pAE, and

dgram-cce and applied AfDesign to the CDRs of the 12

complexes manually selected from the Protein Data Bank

(PDB) in Table I. For each CDR, we generated 10 samples by

redesigning with AfDesign and randomly mutating the amino

acids. A total of 720 samples were generated using these two

methods, and the predicted ΔΔG values were obtained by

inputting the mutant and original PDB files into the DDG

Predictor for each sample.

In Experiment 2, the following parameters were used:

• Number of repetitions: logits-soft-hard = 50-50-5

• num recycles = 0

• Learning rate: 0.01

• Optimization Algorithm: Adam [20]

TABLE I: Protein Data Bank (PDB) IDs of 12 antigen-

antibody complexes (complexes in bold were not used for

AlphaFold2 training [8])

1QNZ, 1VFB, 1JHL, 2DQC, 2YSS, 2UZI,
4XVJ, 5NGV, 6J5F, 7CWO, 7RR0, 7WP1
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Fig. 2: Scatterplot of experimental and predicted values of

ΔΔG for antibody-antigen complexes (correlation coefficient

R = 0.56)

• Types of loss functions and their respective weights:

dgram-cce=1.0, pLDDT=1.0, pAE=1.0

As in Experiment 2, Using ΔΔG predicted by the DDG

Predictor, the average ΔΔG and IMP, the percentage of

sequences generated with a higher binding capacity than the

original amino acid sequence were used as valuation indexes.

IV. RESULTS AND DISCUSSION

A. Preliminary Experiment: Check the performance of DDG
Predictor

Figure 2 shows a scatter plot of the predicted ΔΔG values

by DDG Predictor against the experimental values for the

mutation structures obtained from the AB-Bind Database

using AlphaFold2. The Pearson correlation coefficient between

the experimental and predicted values is 0.56, indicating a

high correlation between them. For the dataset of 209 data

points related to single mutations and 99 data points related

to multiple mutations, the Pearson correlation coefficients

between experimental and predicted values are 0.50 and

0.67, respectively. Particularly, a high prediction accuracy is

observed for multiple mutations.

B. Experiment 1: Determination of Loss Weights

Fig. 3 shows the distribution of ΔΔG values for 60 samples

when designing the six regions of CDR-L1–3 and CDR-H1–3,

each with 1VFB, as design targets under various conditions.

According to Fig 3, there is no difference in the distribution

among the different conditions; no advantage of ΔΔG by

condition was found.

Case A Case B Case C Case D Case E CaseF

Fig. 3: Distribution of ΔΔG for each condition (The line

and cross mark in boxes represent the median and mean,

respectively)

Fig. 4 is a graph that shows the transition of the three

parameters, dgram-cce, pLDDT, and pAE, during the design

process under various conditions when designing CDR-H1 as

the design target. Looking at the transition graph for Case A,

even though only dgram-cce was considered a loss, pLDDT

and pAE also showed correlated changes in their values. In

addition, even when the proportions of pLDDT and pAE in

the loss function increased in Cases B and C, the changes in

the transitions of the two parameters were very small.

Table II lists the average ΔΔG values for the ten samples

generated under each condition when each CDR was the

design target, as well as the average ΔΔG and IMP values

for each condition. Although no clear advantage in binding

affinity was found depending on the conditions, we conducted

Experiment 2 using Case F, which showed the best average

ΔΔG and IMP values. Since we did not observe significant

changes even when the ratio of pLDDT to pAE was altered,

we decided not to conduct further experiments.

C. Experiment 2: Application to existing antigen-antibody
complexes

Fig. 5(a) shows the comparison between designs obtained

using AfDesign and those obtained from 20 random mutations,

in which 20 amino acids were randomly mutated with equal

probability within the same design range. In particular, when

TABLE II: Average ΔΔG and IMP values (PDB 1VFB) for

each condition. Letters in bold indicate the best value in each

CDR.

Case A Case B Case C Case D Case E Case F

CDR-L1 −0.797 −0.816 −0.420 −0.549 −0.666 −0.699
CDR-L2 1.096 1.046 0.935 1.063 0.926 0.829
CDR-L3 −0.561 −1.020 −1.385 −1.480 −0.795 −0.833
CDR-H1 −0.255 −0.306 −0.084 −0.114 −0.376 −0.414
CDR-H2 1.547 1.279 1.555 1.231 1.430 0.945
CDR-H3 1.787 1.702 1.713 1.409 2.491 1.404

avg ΔΔG 0.46 0.31 0.38 0.26 0.50 0.20
IMP (%) 45.0 46.7 36.7 43.3 45.0 46.7
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(a) Case A (b) Case B (c) Case C

(d) Case D (e) Case E (f) Case F

Fig. 4: 1VFB CDR-H1 as the design target and the evolution of the values of the three parameters when designed for each

condition.

CDR-H1 and CDR-H3 were targeted for design, more se-

quences with higher binding affinity than the original sequence

were generated compared to random mutations. However,

when CDR-L2 and CDR-H2 were targeted, the design per-

formance was inferior to random mutations, and the results

differed depending on the CDR.

Fig. 5(b) shows the results for three of the 12 complexes

used in Experiment 3 that were not used for AlphaFold2 train-

ing. It was confirmed that in all regions, a higher percentage

of sequences with higher binding affinity than the original

sequence was generated compared to random mutations or at

least the same level. Thus, it is possible to create mutations

that improve binding affinity, even without training data.

Figs. 6(a) and 6(b) show the superimposed 3D structures of

the actual sequences generated using AfDesign with CDR-L1

and CDR-H3 as the design targets and the original structures

for PDB ID 7RR0. The version of AfDesign used in this study

utilized the proteins registered in PDB in 2019 for AlphaFold’s

training; therefore, the 7RR0 complex registered in PDB in

2021 was not used for training. However, when designing

regions other than CDR-H3, as shown in Fig. 6(a), there

was a tendency to generate sequences with structures similar

to the original loop structure, even for complexes not used

in AlphaFold2 training. The results of this study show that

CDR-H3 tends to produce a structure that is slightly different

from the original loop structure, as shown in Fig. 6(b). This is

because it is difficult to predict the loop structure of CDR-H3

because of the diversity in the sequence and structure of

CDR-H3 compared with those of other regions of the CDR.

Therefore, we speculate that the difference in CDR-H3 loop

structure prediction accuracy by AlphaFold2 may be due to

the generated loop structures being slightly offset from the

original loop structures.

V. CONCLUSION

In this study, we designed antibody sequences using Al-

phaFold2, which can predict molecular 3D structures with high

accuracy, even without training data. In related studies, there

were issues with the design of sequences without experimental

data or with highly variable sequences, such as CDRs. How-

ever, the results of Experiment 2 in this study confirm that

AfDesign can generate sequences that significantly improve

binding affinity compared to randomly mutated sequences,

particularly in cases without experimental data. This suggests

that AfDesign is highly effective for designing sequences with

improved binding affinities, even in cases where little or no

experimental data are available.

In addition, using dgram-cce, pLDDT, and pAE as loss

functions in AfDesign generated sequences that tended to re-

semble the original loop structure. This was observed even for

complexes that were not used in the training of AlphaFold2.

Thus, AfDesign can be highly effective in generating CDR

loop structures that bind well to unknown antigens; however,

further investigation is necessary.

In this study, machine learning prediction tools were used

for evaluation. Therefore, it is necessary to verify whether the
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Fig. 6: Sequence redesign of PDB ID 7RR0 structure by AfDesign

designed sequences bind to the targets through biochemical

experiments.
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